Scaling self-supply

An approach to reach SDG6.1 in rural Africa at a cost of \$25/person, and also contribute to SDGs for Poverty, Food, Gender and Climate

all systems connect

Henk Holtslag & Reinier Veldman MetaMeta / SMART Centre Group <u>henkholtslag49@gmail.com</u>

Training the local private sector in Simple, Market based, Affordable and Repairable Technologies

300 mln. people in rural Sub-Saharan Africa lack "basic service"

SDG6.1 indicator "basic service" = improved source < 30 min. round trip

Most live in areas with less than 50 people per square km. where "Basic service" with conventional technologies would cost \$50 - \$150 per person

Book Self-supply. Sally Sutton. WSP/UNICEF/SKAT 2015

Most rural communal water supply systems consist of a Machine drilled borehole & imported pump

Investment cost (CapEx), \$2000 - \$8000 = subsidized by Governments, NGOsSuch system used by 250 people; average cost/person\$25The same technology for 50 people; average cost/ person\$125

Options that reduce cost (CapEx) to \$25/person

- Upgrading dug wells (close wells with a cover + low-cost pump)
- Drill new small wells (10 to 60 m deep)
- Use locally produced, low-cost pumps (EMAS, Treadle, Rope pump)
- Use underground storage tanks where drilling is expensive
- Condition; Minimum rainfall >200 mm/year

Proposition

To provide "basic service" for 300 million people in rural Africa it is more cost-effective to subsidize self-supply /small farm wells made with local technology than to subsidize larger communal wells made with imported technology.

Self-supply = part of "The SMART approach"

Simple, Market-based, Affordable, Repairable Technologies. Focus on:

- 1. Innovation; affordable technologies, local production
- 2. Training; coach the private sector, guarantee quality; Simple is not easy!!!
- **3.** Support Self-supply; targeted subsidies for those without "basic service". IRC evaluated the SMART approach in 2022 (potential for SDG6 + other SDGs)

Many (new) technologies are fit for self-supply

- Well drilling: EMAS, SHIPO, Rotary jetting
- Pumps: EMAS, Treadle, Rope, Solar pumps.
- **Storage**: Underground tanks, Tube recharge, Deep Bed Farming
- Treatment: Household Water Filters

Cost \$10 - \$40/metre.

Cost \$0.1- \$20/m³ Cost \$20 - \$40

Cost \$60 - \$500

30 - 50 Ltr./day

Examples Hand drilled wells, Rope pump

Zambia. Jacana NGO

- 460 subsidized wells. Condition=income
- 1 well serves 40 people, (IRC eval. 2022)
- 92% pumps functioning!
- created demand, 130 wells full self-supply
- Tanzania. SHIPO, NGO
- >15.000 rope pumps, 60% self-supply
- Nicaragua. SNV, Dutch Aid
- 50.000 rope pumps for farmers
- Income 20 yrs. \$100 mln. with \$2 mln. aid for training, marketing

Number of pumps (sponsored & Self-supply)

mWater Dashboard, Jacana SMART Centre (2022)

Example; EMAS & MoneyMaker pump

Bolivia. EMAS, NGO

- EMAS wells/pump to 60 m deep; Cost 20 m. \$200-\$300
- 70.000 systems in Bolivia, 3000 in Sierra Leone
- 70% paid by families

Kenya. Kick start, NGO

- 3 MoneyMaker pump models, Cost \$90- \$190
- 70.000 sold Kenya, 300.000 in 15 other countries
- 50 % donated NGOs, 50 % full self-supply.
- Irrigation dry season, income \$700/yr.

1. Key factors for success

A. 5 Ps for marketing

- **1. Product;** Effective, Attractive, User friendly, market-based.
- 2. Price; A range of affordable options
- **3. Place**; Products available nearby, a supply chain,
- **4. Promotion**; Product marketing, SMEs. Social marketing/awareness, NGOs
- 5. People; The best marketeer is the neighbour.
- B. Long term follow up coaching qualityC. Creation of critical mass 5 20%

Supporting farm wells. 5 SDGs for the price of SDG6.1 (\$25/ cap.)

SDG 6.1. Water. Wells of \$1000 serve 40 people

SDG 2.

SDG 5.

SDG13.

Food.

- **SDG 1. Income.** MoneyMaker increases income \$700/yr
 - Well = water in dry season = irrigation, livestock, fish,.
 - **Gender.** A well near premises, saves time for women, more safety
 - **Climate.** Increase resilience. Store rain in the wet season \rightarrow water I the dry season.

Concerns self-supply

Water shallow wells safe to drink?
Millions of wells, groundwater depletion?

Solutions

- 1. A \$25 household water filter
- 2. Hand pumps do not deplete groundwater
 - Many small wells better than few large wells
 - Combine wells + rain water harvesting
 - ej. Deep Bed Farming (Tiyeni)
 - Small farmers "water catchment managers"

Conclusions

- 1. Supporting self-supply/farm wells = strong tool to reach SDG6.1
- 2. Cost to reach SDG6.1 with this model (\$25 /person) = 2 to 6 times less than the conventional approach
- 3. Rain water harvesting + Farm wells + Agri skills = Rural development; potential to reach 6 SDGs

Recommendations

- 1. Reach SDG6.1 in SSA? Transformation from;
 - Imported technologies to also locally produced technologies
 - Water for domestic use only to also water for productive use
 - Subsidizing communal wells to also subsidize household/ farm wells. Use examples from Zambia, Tanzania,..

2. Create rural development hubs, Invest in 3Ts. Training, T.... T....3. WASH and Agri sector should cooperate to reach SDGs

Cost basic service for 300 million and who pays?

Cost: 300 million people @ \$25/cap = \$7.5 billion

Who pays?

- Outcome payers. Those who want to reach SDG6.1, to leave no one behind. Also those interested in poverty reduction, food security, gender, employment, climate adaptation
- Carbon credit funds.
- Funds for climate resilience,..

SMART Centres in 10 countries

MetaMeta / SMART Centre Group info@smartcentregroup.com

Background papers <u>www.smartcentregroup.com</u>

SMART Centre Zambia <u>www.smartcentrezambia.com</u>

Training the local private sector in Simple, Market based, Affordable and Repairable Technologies

References

- Assessment of the Simple, Market-based, Affordable and Repairable Technologies (SMART) approach for Water and Sanitation, IRC WASH, 2022 (<u>link</u>)
- RWSN Field Note: History and status of the rope pump in Nicaragua (link)
- Book: Self-supply: filling the gaps in public water supply provision, S.Sutton, J.Butterworth (<u>link</u>)

Papers:

- Regarding Groundwater and Drinking Water Access through A Human Rights Lens: Self-Supply as A Norm, Jenny Gronwall, Kerstin Danert (<u>link</u>)
- Monitoring Groundwater Use as a Domestic Water Source by Urban Households: Analysis of Data from Lagos State, Nigeria and Sub-Saharan Africa with Implications for Policy and Practice, Kerstin Danert, Adrian Healy (<u>link</u>)
- Groundwater, Self-Supply and Poor Urban Dwellers: A Review with Case Studies; IIED: London, UK, 2010. Grönwall, J.; Mulenga, M.; McGranahan (<u>link</u>)